Abstract

The normal form technique is an established method for analysing weakly nonlinear vibrating systems. It involves applying a simplifying nonlinear transform to the first-order representation of the equations of motion. In this paper we consider the normal form technique applied to a forced nonlinear system with the equations of motion expressed in second-order form. Specifically we consider the selection of the linearised natural frequencies on the accuracy of the normal form prediction of sub- and superharmonic responses. Using the second-order formulation offers specific advantages in terms of modeling lightly damped nonlinear dynamic response. In the second-order version of the normal form, one of the approximations made during the process is to assume that the linear natural frequency for each mode may be replaced with the response frequencies. Here we will show that this step, far from reducing the accuracy of the technique, does not affect the accuracy of the predicted response at the forcing frequency and actually improves the predictions of sub and superharmonic responses. To gain insight into why this is the case, we consider the Duffing oscillator. The results show that the second-order approach gives an intuitive model of the nonlinear dynamic response which can be applied to engineering applications with weakly nonlinear characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.