Abstract

The SEL (Spectral ELement) macroscopic modeling code for magnetically confined plasma combines adaptive spectral element spatial discretization and nonlinearly implicit time stepping via Newton's method on massively parallel computers. Static condensation is implemented to construct the Shur complement of the Jacobian matrix, which greatly accelerates the linear system solution and distinguishes itself from conventional Newton–Krylov schemes. Grid alignment with the evolving magnetic field, implemented with a variational principle, is a key component of grid adaptation in SEL, and is critical to toroidal plasma applications. Results of 2D magnetic reconnection are shown to illustrate the accuracy and efficiency of the parallel algorithms built on the Portable, Extensible Toolkits for Scientific Computing (PETSC) framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.