Abstract

In this paper, we study the Seiberg-Witten equations on a compact 3-manifold with boundary. Solutions to these equations are called monopoles. Under some simple topological assumptions, we show that the solution space of all monopoles is a Banach manifold in suitable function space topologies. We then prove that the restriction of the space of monopoles to the boundary is a submersion onto a Lagrangian submanifold of the space of connections and spinors on the boundary. Both these spaces are infinite dimensional, even modulo gauge, since no boundary conditions are specified for the Seiberg-Witten equations on the 3-manifold. We study the analytic properties of these monopole spaces with an eye towards developing a monopole Floer theory for 3-manifolds with boundary, which we pursue in Part II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.