Abstract

In this paper the Seiberg–Witten map is first analyzed for non-commutative Yang–Mills theories with the related methods, developed in the literature, for its explicit construction, that hold for any gauge group. These are exploited to write down the second-order Seiberg–Witten map for pure gravity with a constant non-commutativity tensor. In the analysis of pure gravity when the classical space–time solves the vacuum Einstein equations, we find for three distinct vacuum solutions that the corresponding non-commutative field equations do not have solution to first order in non-commutativity, when the Seiberg–Witten map is eventually inserted. In the attempt of understanding whether or not this is a peculiar property of gravity, in the second part of the paper, the Seiberg–Witten map is considered in the simpler case of Maxwell theory in vacuum in the absence of charges and currents. Once more, no obvious solution of the non-commutative field equations is found, unless the electromagnetic potential depends in a very special way on the wave vector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call