Abstract
Assume that \Gamma is a connected negative definite plumbing graph, and that the associated plumbed 3-manifold M is a rational homology sphere. We provide two new combinatorial formulae for the Seiberg–Witten invariant of M . The first one is the constant term of a 'multivariable Hilbert polynomial', it reflects in a conceptual way the structure of the graph \Gamma , and emphasizes the subtle parallelism between these topological invariants and the analytic invariants of normal surface singularities. The second formula realizes the Seiberg–Witten invariant as the normalized Euler characteristic of the lattice cohomology associated with \Gamma , supporting the conjectural connections between the Seiberg–Witten Floer homology, or the Heegaard–Floer homology, and the lattice cohomology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.