Abstract

The technique of Thermally Stimulated Currents is used to study the slow molecular mobility in a series of poly (1,4-cis-isoprene) samples with different molecular weights, Mw, and low polydispersity. The technique revealed a high resolution power, particularly useful in the study of the lower molecular weight samples where the chain and the segmental relaxations strongly overlap. The dynamic crossover that is reported for the normal mode by varying the molecular weight is clearly revealed by the thermally stimulated depolarization currents results through the temperature location, TMn, of the normal mode peak, the values of the relaxation time at TMn, τ(TMn), and the value of the fragility index of the normal mode, mn. The kinetic features of the glass transition relaxation of polyisoprene have also been determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.