Abstract
BackgroundSeed endophytic bacteria are beneficial to plants. They improve seedling growth by enhancing plant nutrient uptake, modulating stress-related phytohormone production, and targeting pests and pathogens with antibiotics. Seed endophyte composition can be influenced by pollination, plant cultivar, and soil physicochemical conditions. However, the effects of plant community richness on seed endophytes are unknown. To investigate the effects of increasing plant species richness on the diversity and composition of the seed microbiome, we made use of a well-established long-term biodiversity experiment in Germany (The Jena Experiment). We sampled seeds from different Plantago lanceolata blossoms in a plant diversity gradient ranging from monoculture to 16 species mixtures. The seeds were surface sterilized to remove seed surface-associated bacteria and subjected to a metabarcoding approach to assess bacterial community structure.ResultsOur data indicate a very stable core microbiome, which accounted for more than 90% of the reads and was present in all seeds independent of the plant richness level the seeds originated from. It consisted mainly of reads linked to Pseudomonas rhizosphaerae, Sphingomonas faeni and Pirellulla spp. 9% of the obtained reads were not part of the core microbiome and were only present in plots of specific diversity levels. The number of unique ASVs was positively correlated with plant richness. Interestingly, most reads described as non-core members belonged to the same genera described as the core microbiome, indicating the presence of different strains or species with possibly different functional properties important for seed performance.ConclusionOur data indicate that Plantago lanceolata maintains a large seeds core microbiome across the plant richness gradient. However, the number of unique ASVs increases alongside the plant community richness, indicating that ecosystem biodiversity also mitigates diversity loss in seed endophytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.