Abstract

We explore the double copy of effective field theories (EFTs), in the recently proposed generalized color-kinematics and Kawai-Lewellen-Tye (KLT) approaches. In the former, we systematically construct scalar numerators satisfying the Jacobi identities from simpler numerator seeds with trace-like permutation properties. This construction has the advantage of being easily applicable to any multiplicity, which we exemplify up to 6-point. It employs the linear map between color factors formed by single traces of generators and by products of the structure constants, which also relates the generalized KLT and color-kinematics formalisms, allowing to produce KLT kernels at arbitrary order in the EFT expansion. At 4-point, we show that all EFT kernels are generated and that they only yield double-copy amplitudes which can also be obtained from the traditional KLT kernel. We perform initial checks suggesting that the same conclusions also hold at 5-point. We focus on single-trace massless scalar EFTs which however also control the higher-derivative corrections to gauge and gravity theories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.