Abstract

Knudsen and Meier applied the χ2-attack to RC6. The χ2-attack recovers a key by using high correlations measured by χ2-value. The best χ2-attacks to RC6 whose security is guaranteed theoretically works on 16-round RC6 with 192- and 256-bit key but just 8-round RC6 with 128-bit key, because it recovers keys of RC6 symmetrically, which requires a time complexity of #plaintexts × 254 and a memory complexity of 280 for recovering one key. In this paper, we improve the χ2-attack to reduce the time complexity. We give the theorem that evaluates the success probability of the χ2-attack on RC6 without using any experimental result. Our key recovery attack recovers keys asymmetrically, which requires a time complexity of #plaintexts × 231 and a memory complexity of 252 for recovering one key. As a result, our key recovery attack works on 16-round RC6 with 192- and 256-bit key and 12-round RC6 with 128-bit key. In the case both of 196- and 256-bit keys, our attack surprisingly reduces the time and memory complexity compared with that of the previous attack. We also demonstrate our theorem on RC6-8/4/8 and make sure of the accuracy by comparing our approximation with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.