Abstract

The interplay between the insect immune system and entomopathogenic fungi during cuticle penetration is not yet fully understood. Here, we show that a secretory protein COA1 (coat of appressorium 1) from Metarhizium robertsii, an entomopathogenic fungus causing diseases in a wide range of insects, is required to avoid host immune recognition during cuticle penetration. COA1 is highly expressed on the cuticle and translocated to the cell surface, where it directly binds with and masks carbohydrates of the fungal cell wall to avoid provoking the host's intense immune response. Deletion of Coa1 results in a robust immune response, leading to a reduction in bacterial load in both the gut and hemocoel and ultimately attenuating fungal virulence. Our work reveals a novel cell surface protein indispensable for fungal pathogenicity via masking cell wall carbohydrates to avert a hypersensitive response from the host.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.