Abstract

The second-order wave force is analysed for diffraction of monochromatic water waves by a vertical cylinder. The force is evaluated directly from pressure integration over the cylinder, and the second-order potential is derived by Weber transformation of the corresponding forcing function on the free surface. This forcing function is reduced to a form which involves a simple factor inversely proportional to the radial coordinate plus an oscillatory function which decays more rapidly in the far field. This feature alleviates the slow rate of convergence involved in capturing the far-field effect. Benchmark computations are obtained and compared with other works. Asymptotic approximations are derived for long and short wavelengths. The analysis and results are primarily for the case of infinite fluid depth, but the finite-depth case is also considered to facilitate comparison with other computations and to illustrate the importance of finite-depth effects in the long-wavelength asymptotic regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.