Abstract
The finite sample theory using higher-order asymptotics provides better approximations of the bias for a class of estimators. Phillips (1991) demonstrated the higher-order asymptotic expansions for LAD estimators. Rilstone et al. (1996) provided the second-order bias results of conditional mean regression estimators. This paper develops new analytical results on the second-order bias of the conditional quantile regression estimators, which enables an improved bias correction and thus to obtain improved quantile estimation. In particular, we show that the second-order bias is larger towards the tails of the conditional density than near the median, and therefore the benefit of the second-order bias correction is greater when we are interested in the deeper tail quantiles, e.g., for the study of income distribution and financial risk management. The Monte Carlo simulation confirms the theory that the bias is larger at the tail quantiles, and the second-order bias correction improves the behavior of the quantile estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.