Abstract

Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) were used to investigate the conformational changes of heated whey protein (WP) and the corresponding changes in the hydrolysates immunoreactivity were determined by competitive enzyme-linked immunosorbent assay (ELISA). Results showed that the contents of alpha- helix and beta-sheet of WP did not decrease much under mild heating conditions and the antigenicity was relatively high; when the heating intensity increased (70 degrees for 25 min or 75 degrees C for 20 min), the content of alpha- helix and beta-sheet decreased to the minimum, so was the antigenicity; However, when the WP was heated at even higher temperature and for a longer time, the beta-sheet associated with protein aggregation begun to increase and the antigenicity increased correspondingly. It was concluded that the conformations of heated WP and the antigenicity of its hydrolysates are related and the optimum structure for decreasing the hydrolysates antigeniity is the least content of alpha-helix and beta-sheet. Establishing the relationship between the WP secondary structure and WP hydrolysates antigenicity is significant to supply the reference for antigenicity reduction by enzymolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call