Abstract

This paper describes the classification of the $n$-fold symmetric product of a finite graph by means of its homotopy type, having as universal models the $n$-fold symmetric product of the wedge of $n$-circles; and introduces a CW-complex called $binomial torus$, which is homeomorphic to a space that is a strong deformation retract of the second symmetric products of the wedge of $n$-circles. Applying the above we calculate the fundamental group, Euler characteristic, homology and cohomology groups of the second symmetric product of finite graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.