Abstract

This article describes, for the first time, the study of electrical behavior of the first element belonging to the family of Second Generation of layout styles for Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), entitled Half-Diamond. It was conceived in order to further boosting the electrical performance of the analog MOSFETs in relation to the one found in Diamond MOSFETs (hexagonal gate shape). This innovative layout style has by objective further enhance the Longitudinal Corner Effect (LCE) and mainly the Parallel Connections of MOSFETs with Different Channel Lengths Effect (PAMDLE) by the means of further reducing of the effective channel lengths of Diamond MOSFETs in relation to those measured in the conventional (rectangular gate geometry) ones (RMs). The main results found by the three-dimensional numerical simulations indicates that the Half-Diamond MOSFET (HDM) is able to provide a saturation drain current 13% higher than the one observed in the RM counterpart. Furthermore, the electrical behaviors of LCE, PAMDLE and DEPAMBRE in HDM are analyzed in detail by observing the electrical behavior of the electrostatic potentials, longitudinal electric fields and drain current densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.