Abstract

We previously revealed that the SEC14 phospholipid transfer protein from Nicotiana benthamiana (NbSEC14) has a role in plant immune responses against phytopathogenic bacteria in a hypersensitive response-independent manner. To characterize the role of NbSEC14 on plant immunity, we analyzed the relationship between NbSEC14 and pathogen-associated molecular pattern-triggered immunity (PTI). NbSEC14-silenced plants exhibited down-regulated expression of PTI marker genes (NbAcre31 and NbPti5) after being inoculated with Pseudomonas syringae pv. tabaci. Additionally, we observed accelerated bacterial growth and inhibited expression of PTI marker genes in NbSEC14-silenced plants infected with the hrp-deficient P. syringae pv. tabaci mutant. We used Pseudomonas fluorescens and flg22 as PTI inducers to further examine the association between NbSEC14 and the induction of PTI. The expression of PTI marker genes was compromised in NbSEC14-silenced plants infiltrated with P. fluorescens and flg22. Meanwhile, a cell death-based PTI assay indicated NbSEC14 was required for PTI. Furthermore, callose deposition and disease resistance induced by flg22 were compromised in NbSEC14-silenced plants. These results suggest that NbSEC14 may help regulate the induction of PTI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.