Abstract

The western Bering Sea is an important region that is used by many nekton species for feeding. From the seasonal aspect, these waters are characterized by pronounced dynamics of the abundance and structure of the nekton community. The pattern of seasonal variations in the total biomass, composition, and structure of nekton in the upper epipelagic layer (0–50 m) of this region are considered based on the data of the complex studies conducted by the Pacific Research Fisheries Center (TINRO Center) in the deep-sea basins of the western Bering Sea and the Navarin area in June–October, 2003–2015. During June–October, the total nekton biomass changed by more than an order of magnitude: from 100 kg/km2 in early June it increased to a maximum of 2700 kg/km2 in the middle of August and then declined significantly, to 200 kg/km2, in late October. The major contribution to the nekton biomass was made by Pacific salmon (Oncorhynchus spp.), mainly O. keta, as well as by the boreopacific gonate squid (Boreoteuthis borealis) and the shortarm gonate squid (Gonatus kamtschaticus). As well, walleye pollock (Theragra chalcogramma), Pacific herring (Clupea pallasii), and capelin (Mallotus villosus) were abundant in waters near the shelf. The dynamics of the species structure can be divided into three periods: (1) early summer, from June to the second 10 days of July, when pre-anadromous pink (O. gorbuscha) and chum salmon predominate and the species diversity is at a medium level (the polydominance index is 3.5–4.0); (2) summer, from the third 10 days of July to the second 10 days of September, when chum salmon becomes dominant (more than 70% of the biomass) and the species diversity is at a minimum (1.5–2.0); and (3) autumn, from the third 10 days of September to October, when common species such as chum salmon, sockeye salmon, and boreopacific gonate squid have relatively equal proportions, the proportion of pink salmon underyearlings is also high, and the species diversity is at a maximum (4.5). The pattern of the spatial distribution in the early summer period is characterized by active formation of the nekton community due to the large-scale migrations from the central and eastern Bering Sea and from the Pacific Ocean. In the summer period, the concentration of the nekton in the western Bering Sea, particularly in the Aleutian Basin, reaches the maximum level and the migratory activity decreases. Reverse migration processes are observed in the autumn period: a major portion of the nekton biomass redistributes to the southeastern Commander Basin for further movement to the ocean and the central Bering Sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call