Abstract

Large-scale campus resembles a small “semi-open community,” harboring disturbances from the exchanges of people and vehicles, wherein stressors such as temperature and population density differ among the ground surfaces of functional partitions. Therefore, it represents a special ecological niche for the study on microbial ecology in the process of urbanization. In this study, we investigated outdoor microbial communities in four campuses in Wuhan, China. We obtained 284 samples from 55 sampling sites over six seasons, as well as their matching climatic and environmental records. The structure of campus outdoor microbial communities which influenced by multiple climatic factors featured seasonality. The dispersal influence of human activities on microbial communities also contributed to this seasonal pattern non-negligibly. However, despite the microbial composition alteration in response to multiple stressors, the overall predicted function of campus outdoor microbial communities remained stable across campuses. The spatial–temporal dynamic patterns on campus outdoor microbial communities and its predicted functions have bridged the gap between microbial and macro-level ecosystems, and provided hints toward a better understanding of the effects of climatic factors and human activities on campus micro-environments.

Highlights

  • Large-scale campus, consisting of gates, teaching buildings, school service buildings, living quarters, roads, and other facilities of varying sizes, wherein campus dwellers are exposed to complex macro-environment and micro-environment within a “semi-open community.” Living within a “semi-open community,” students go out of the campus seldom and spend the most time in the campus

  • How spatial and temporal dynamics of campus outdoor microbial communities are affected by human activities remains unclear and there still lack systematic and comprehensive investigations for campus outdoor microbiome

  • We mainly focused on the following questions: (i) Does campus outdoor microbial communities exert seasonal alteration and how? Seasonal factor and other climatic factors were integrated to investigate microbial communities’ chronological dynamics. (ii) Does the human activities influence the microbial communities? Samples were collected according to different sites in Huazhong University of Science and Technology (HUST) (Figure 1A): first, Classroom, Canteen, Dorm, and Library were classified as “CCDL” which routinely accommodates a densely populated flow from the east to the west of the campus

Read more

Summary

Introduction

Large-scale campus, consisting of gates, teaching buildings, school service buildings, living quarters, roads, and other facilities of varying sizes, wherein campus dwellers are exposed to complex macro-environment and micro-environment within a “semi-open community.” Living within a “semi-open community,” students go out of the campus seldom and spend the most time in the campus. Comparing to other working place or entertainment venues as well nature or artificial ecological niche, in the campus, there are almost daily social activities, harboring disturbances from the exchanges of people and vehicles. Such a semi-open community could be roughly defined as a sociological and biological community with constraint access of persons from outside with gates and hotels as the interfaces, which is strongly affected by environmental stressors like temperature. The outdoor microbial ecology on campus is a new niche for microbial communities profiling, completely different from the indoor microbial communities that have been examined extensively It represents an important niche between large city boroughs (Bik et al, 2016) and a relatively small occupant apartment. How spatial and temporal dynamics of campus outdoor microbial communities are affected by human activities remains unclear and there still lack systematic and comprehensive investigations for campus outdoor microbiome

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.