Abstract

Abstract The seasonal heat transport mechanisms important in the Pacific equatorial upwelling zone are investigated using the primitive equation, reduced gravity model developed by Gent and Cane. Mechanisms of meridional heat transport are shown and discussed with respect to the heat budget of a box about the equator containing the upwelling. There is a horizontal cell in which warm water enters the upwelling box in the west in strong equatorward currents located near the, western boundary, which feed the eastward flowing undercurrent. To compensate, water leaves the section as a colder and weaker poleward thermocline flow in the eastern basin. The meridional-vertical cell comprises additional equatorward geostrophically balanced inflow in the upper thermocline, which is compensated by the warmer poleward outflow by Ekman divergence in the surface layer. In the annual mean, the magnitude of the net heat exported by the meridional-vertical cell exceeds the net heat import due to the gyre exchange so that t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.