Abstract

Lipo-poly-saccharide (LPS) induced Gram-negative sepsis and septic shock remain lethal in up to 60 % of cases, and LPS antagonists that neutralize its endotoxic action are the subject of intensive research. The molecular motifs of specific binding of LPS by antiendotoxin proteins and peptides may lead to an understanding of LPS action at the atomic level and provide clues for the development of new immunomodulatory compounds for use as therapy in the treatment of Gram-negative bacterial sepsis. The interaction of LPS with its cognate binding proteins has been structurally elucidated in the single case of the X-ray crystallographic structure of LPS in complex with the integral outer membrane protein FhuA from E. coli K-12 (Ferguson et al., Science 1999, 282, 2215). This structure and other known structures of LPS binding proteins have been used to propose a common binding motif of LPS to proteins. Another independent source of structural information are solution structures of peptides in complex with LPS that can be determined using the transferred NOE effect. The molecular mechanisms of biological activity of bacterial endotoxins can additionally be probed by theoretical means. The growing structural knowledge is opening pathways to the design of peptides or peptidomimetics with improved antiendotoxin properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call