Abstract

PurposeCyclooxygenase (COX-2) has been validated as a molecular target for treating inflammatory diseases. The present work was performed to identify potential COX-2 inhibitors by employing pharmacophore modeling.MethodsThe pharmacophore features consisted of seven features, ie, three hydrophobic, one negative ion, and three hydrogen bond acceptors, which were developed based on the structure of COX-2 inhibitor, (R)-naproxen.ResultsThe pharmacophore model was validated with a Goodness of Hit (GH score) of 0.754 and the values of AUC100% 0.51. Screening against the ZINC database retrieved 1675 hits, while the molecular docking procedure identified four best hit molecules in term of binding orientation and binding energies, ie, Lig_1805/ZINC103584272 (E = −11.03 kcal/mol), Lig_553/ZINC408573132 (E = −10.92 kcal/mol), Lig_680/ZINC103584263 (E = −10.90 kcal/mol), and Lig_2006/ZINC19324645 (E = −10.62 kcal/mol).ConclusionThe interactions of the four hits occurred in the binding site as (R)-naproxen did, and interestingly, their binding affinities were stronger than (R)-naproxen, implying their potential as COX-2 inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.