Abstract

BackgroundThe organic matrix of biominerals plays an important role in biomineral formation and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin, which is an important model organism for developmental biology and biomineralization, only few matrix components have been identified and characterized at the protein level. The recent publication of the Strongylocentrotus purpuratus genome sequence rendered possible not only the identification of possible matrix proteins at the gene level, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy, proteomic analysis.ResultsWe identified 110 proteins as components of sea urchin test and spine organic matrix. Fourty of these proteins occurred in both compartments while others were unique to their respective compartment. More than 95% of the proteins were detected in sea urchin skeletal matrices for the first time. The most abundant protein in both matrices was the previously characterized spicule matrix protein SM50, but at least eight other members of this group, many of them only known as conceptual translation products previously, were identified by mass spectrometric sequence analysis of peptides derived from in vitro matrix degradation. The matrices also contained proteins implicated in biomineralization processes previously by inhibition studies using antibodies or specific enzyme inhibitors, such as matrix metalloproteases and members of the mesenchyme-specific MSP130 family. Other components were carbonic anhydrase, collagens, echinonectin, a α2-macroglobulin-like protein and several proteins containing scavenger receptor cysteine-rich domains. A few possible signal transduction pathway components, such as GTP-binding proteins, a semaphorin and a possible tyrosine kinase were also identified.ConclusionThis report presents the most comprehensive list of sea urchin skeletal matrix proteins available at present. The complex mixture of proteins identified in matrices of the sea urchin skeleton may reflect many different aspects of the mineralization process. Because LC-MS/MS-based methods directly measures peptides our results validate many predicted genes and confirm the existence of the corresponding proteins. Considering the many newly identified matrix proteins, this proteomic study may serve as a road map for the further exploration of biomineralization processes in an important model organism.

Highlights

  • The organic matrix of biominerals plays an important role in biomineral formation and in determining biomineral properties

  • Glean3:24565 was identified in spine and test matrix while Glean3:24564 was identified in test matrix only. This may be due to the different abundances of the presumed sea urchin α2-macroglobulin in these skeletal elements. Both matrices contained many proteins with immunoglobulin (IG) domains (See additional file 1: Proteins identified in test and spines) sometimes accompanied by leucine-rich repeats (LRR; [Glean3:25966 and 05538]) and fibronectin 3 (FN3) domains [Glean3:25966]

  • Using high-throughput, high-accuracy proteomic techniques we have identified more than 100 proteins in the organic matrices of spines and test (See additional file 1: Proteins identified in test and spines; additional file 5: Sequences of unique peptides identified in spine matrix and additional file 6: Sequences of unique peptides identified in test matrix)

Read more

Summary

Introduction

The organic matrix of biominerals plays an important role in biomineral formation and in determining biomineral properties. In sea urchin, which is an important model organism for developmental biology and biomineralization, only few matrix components have been identified and characterized at the protein level. The sea urchin test, which protects the internal organs and takes over skeletal functions, consists of small plates which are bound together by an extracellular matrix rich in collagen. The skeletal elements are covered by an epidermis [4] Both test and spines contain a network of channels and pores, the stereom. The PMCs provide the mineral, which is delivered in the form of amorphous calcium carbonate accumulated in intracellular vesicles [11], and the protein precursors for matrix formation. Adult skeletal elements appear to be formed by similar syncytia enclosing a vacuolar cavity containing an organic matrix for mineralization [12]. Amorphous calcium carbonate was shown to be the mineral precursor in the repair of adult spines [13]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call