Abstract

This study provides an overview of the various components of the global mean sea level evolution over two time spans: (1) 2005–2012 (corresponding to the full deployment of the Argo program) and (2) 2003–2012. Using a sea level budget approach, we compare altimetry-based global mean sea level, global ocean mass from GRACE space gravimetry and steric sea level from Argo and other in situ measurements. One goal of this study is to investigate whether it is possible to constrain the deep ocean contribution to the global mean sea level rise over the last decade. This question is particularly relevant, considering the current debate about the ‘hiatus,’ i.e., the observed recent pause of the global mean air and sea surface temperature evolution while the planet is still in thermal imbalance. We consider a total of 16 different data sets. Differences are noticed between data sets related to each variable (sea level, ocean mass and steric sea level), mostly due to data processing issues. Therefore, we perform the analysis using averages of the available data sets. For each period, we find that, when removing from the global mean sea level, the contributions of the global mean ocean mass and steric sea level (estimated for the 0–1,500 m ocean layer), there remains a residual signal displaying a positive slope of 0.3 ± 0.6 and 0.55 ± 0.6 mm/year over 2005–2012 and 2003–2012, respectively. Comparing with an ocean reanalysis and according to direct (but sparse) ocean temperature measurements below 1,500 m, it seems unlikely that the observed residual signal can be attributed to deep (below 1,500 m) ocean warming, in agreement with other recently published results. We estimate that it possibly reflects, at least partly, the signature of a missing upper ocean steric signal in regions uncovered by current observing systems. Our study also shows a steady warming increase since 2003 of the 700–1,500 m ocean layer (amounting ~0.2 mm/year in steric sea level equivalent), confirming previous findings, but seen in our study in each of the eight different steric data sets considered.

Highlights

  • Sea level is an interesting quantity in Earth sciences research as it integrates variations from different climatic and non-climatic variables

  • This study provides an overview of the various components of the global mean sea level evolution over two time spans: (1) 2005–2012 and (2) 2003–2012

  • We find that, when removing from the global mean sea level, the contributions of the global mean ocean mass and steric sea level, there remains a residual signal displaying a positive slope of 0.3 ± 0.6 and 0.55 ± 0.6 mm/year over 2005–2012 and 2003–2012, respectively

Read more

Summary

Introduction

Sea level is an interesting quantity in Earth sciences research as it integrates variations from different climatic and non-climatic variables. In the 5th Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), it was reported that over the 1993–2010 time span (corresponding to the high-precision satellite altimetry era), the rate of global mean sea level (GMSL) rise is due to the combined effects of land ice melt (50 %), ocean thermal expansion (37 %) and anthropogenic land water storage decrease (13 %) (Church et al 2013). The sum of these contributions amounts to 2.8 ± 0.5 mm/year, a value only slightly lower than the rate of sea level rise observed by altimeter satellites, of 3.2 ± 0.4 mm/ year. We discuss their results and compare them with ours

Sea Level Data
Ocean Mass Data
Period P1
Period P2
Global Mean Sea Level and Ocean Mass Time Series
Steric Sea Level Time Series
Mid-Ocean and Deep Ocean Contribution
Findings
Discussion and Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call