Abstract
The catalytic center of the RNA from the negative strand of the satellite RNA of chicory yellow mottle virus type 1 (sCYMV1) is in the hairpin ribozyme family, has catalytic activity, and cleaves substrates before a preferred GUA sequence. This is different from that of the satellite RNA from the negative strand of tobacco ringspot virus (sTRSV) which prefers a GUC sequence at the site of cleavage. The sCYMV1 hairpin ribozyme has now been developed for cleaving heterologous RNA substrates. When helix 1 was extended from the native 5 bp to 6 bp with a newly added A:U base pair, catalytic activity increased three-fold. The preferred sequence for the substrate loop was the native A*GUA sequence where * is the site of cleavage. When each nucleotide in this sequence was changed to each of the other three nucleotides, catalytic activity decreased 66-100%. RNA targets, containing this A*GUA sequence, were located in both human papillomavirus and HIV-1. Ribozymes were developed which efficiently cleaved these targets in vitro. These results identify a new class of hairpin ribozymes capable of cleaving substrates before a preferred GUA sequence rather than the GUC preferred by the sTRSV hairpin ribozyme. This expands the repertoire of target sites available for gene therapy using the hairpin ribozyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.