Abstract

Defects have a serious impact on the load carrying capacity and the safety of ancient architectural wood members. Common screening methods to identify defects cause damage to this wood. To protect ancient architecture, it is necessary to develop a method that can screen for internal defects and estimate their size quickly and efficiently without destruction. This paper studied the detection mechanism of the sound hammering method for screening internal defects in wood. Wood members generated different kinds of vibration through hammering experiments, and the vibration produced by hammering wood with internal-hole defects was divided into three kinds: local surface vibration, the whole structure vibration, and defective-part vibration. The parameters and their variation of these three kinds of vibration were investigated by a mechanical vibration simplified model, and the method for screening the internal defects based on sound hammering was proposed. The feasibility of the method was verified by experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.