Abstract

Sclerosteosis and Van Buchem disease are two rare bone sclerosing disorders characterized by increased bone mineral density, tall stature and entrapment of cranial nerves due to overgrowth of a highly dense bone. Recent advances in human genetics have revealed the genetic background of these disorders by cloning the SOST gene, which is localized on chromosome region 17q12-q21 and codes for sclerostin. Sclerostin is a protein produced almost exclusively from osteocytes inhibiting bone formation by both osteoblasts and osteocytes. At the molecular level, sclerostin inhibits the Wnt signaling pathway, which plays a critical role in osteoblast development and function. Induced sclerostin deficiency in mice reproduces the bone sclerosing human diseases, while sclerostin excess leads to bone loss and reduced bone strength. The extracellular nature of sclerostin has rendered it a promising target for the development of novel anti-osteoporotic treatment. Otherwise healthy carriers of the SOST mutation present with increased bone mass and low levels of sclerostin in serum in contrast to patients with sclerosteosis, who exhibit undetectable levels, thus pointing to the possibility of titration of sclerostin levels in the circulation. Based on these unique characteristics, human anti-sclerostin antibodies have been developed and tested in ovariectomized rats and monkeys, demonstrating very promising results in bone formation. Clinical phase II and III trials are currently underway thereby translating human genetics to drug development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call