Abstract

The ultimate goal of ecotoxicological testing is to predict ecological effects of chemicals and other stressors. Since damage should be avoided rather than corrected after it occurs, the predictive value of such tests is crucial. A modest base of evidence shows that, in some cases, extrapolations from bioassays on one species to another species are reasonably accurate and, in other cases, misleading. Extrapolations from laboratory bioassays to response in natural systems at the population level are effective if the environmental realism of the bioassay is sufficiently high. When laboratory systems are poor simulations of natural systems, gross extrapolation errors may result. The problem of extrapolating among levels of biological organization has not been given the serious attention it deserves, and currently used methodologies have been chosen for reasons other than scientific validity. As the level of biological organization increases, new properties are added (e.g., nutrient cycling, energy transfer) that are not readily apparent at the lower levels. The measured responses (or end points) will not be the same at all levels of biological organization, making the validation of predictions difficult. Evidence indicates that responses of ecologically complex laboratory systems correspond to predicted and documented patterns in stressed ecosystems. The difficulties of improving the ecological evidence used to predict adverse effects are not insurmountable since the essence of predictive capability is the determination of effects thresholds at all levels of organization. The dilemma between basing predictive schemes on either traditional or holistic methods can only be solved by facing scientific and ethical questions regarding the adequacy of evidence used to make decisions of environmental protection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.