Abstract

A burning cigarette is a known cause of fire when mishandled. Studies into cigarette ignition propensity intensified after the US Cigarette Fire Safety Act of 1984. Extensive research has investigated the thermal properties of a smouldering cigarette, mostly away from any object of thermal contact or interference. To understand fire ignition, the thermophysics of cigarette’s burning tip has also been examined with and without a contact substrate. In either free or contact smouldering cases, oxygen diffusion through the cigarette wrapping paper has been found to be an important parameter controlling the rate of burn and the energy released. Research by the US National Institute of Standards and Technology led to a standardized test method to determine cigarette ignition propensity, and eventually regulations enforcing Reduced Ignition Propensity (RIP) cigarettes have been passed in all US states and other countries. Among the physical parameters of a burning cigarette related to its thermal energy release, circumferential bands applied to the cigarette wrapping paper that reduce air permeability or diffusivity during smouldering have become the main approach to produce commercial RIP cigarettes. Studies have been performed to ensure that RIP cigarettes have equivalent or lower mainstream smoke yields and biological activities as compared with their conventional non-RIP equivalents. The effects of the paper band properties (width, gap between the bands, type as well as the amount of the material applied) have been studied systematically to establish a manufacturability window. Studies on human smoking behaviour confirmed that RIP cigarettes matched closely their predecessors. The bands, as intended, alter the combustion temperatures during cigarette smouldering within the band. Further research into the interaction of RIP cigarettes with different types of commercial upholstery fabrics and materials should help to understand its mechanism of action in support of emerging post-implementation fire statistics.

Highlights

  • Dropped or improperly discarded, cigarettes may cause fire, and cigarette-related fire can lead to property losses, injuries and fatalities (Hall JR Jr, 2013; Ahrens 2011; Ahrens 2013)

  • For a burning cigarette to ignite a substrate, three steps have to take place: first, thermal contact must occur between the cigarette and the substrate; second, there must be sufficiently high energy release from the cigarette so that the temperature of a localized area of the substrate is above its ignition temperature; and third, the localised smouldering has to propagate (Ohlemiller 1985; Drysdale 2011; Rein 2009; Salig 1982)

  • Contact between the burning cigarette and the material is usually due to accidents or carelessness, as reflected in the fact that approximately 26 % of residential smoking-related fires originate in the living rooms, family rooms and dens, not counting all residential categories (Hall JR Jr, 2013)

Read more

Summary

Introduction

Cigarettes may cause fire, and cigarette-related fire can lead to property losses, injuries and fatalities (Hall JR Jr, 2013; Ahrens 2011; Ahrens 2013). Contact between the burning cigarette and the material is usually due to accidents or carelessness, as reflected in the fact that approximately 26 % of residential smoking-related fires originate in the living rooms, family rooms and dens, not counting all residential categories (Hall JR Jr, 2013). This contributes to about 75 % of the fire deaths

Objectives
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call