Abstract
In this paper, the authors introduce a definition of the Schwarzian derivative of any locally univalent harmonic mapping defined on a simply connected domain in the complex plane. Using the new definition, the authors prove that any harmonic mapping f which maps the unit disk onto a convex domain has Schwarzian norm ∥Sf∥ ≤ 6. Furthermore, any locally univalent harmonic mapping f which maps the unit disk onto an arbitrary regular n-gon has Schwarzian norm $$\left\| {{S_f}} \right\| \leq {8 \over 3}$$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.