Abstract

The Schur algorithm and its time-domain counterpart, the fast Cholseky recursions, are some efficient signal processing algorithms which are well adapted to the study of inverse scattering problems. These algorithms use a layer stripping approach to reconstruct a lossless scattering medium described by symmetric two-component wave equations which model the interaction of right and left propagating waves. In this paper, the Schur and fast Chokesky recursions are presented and are used to study several inverse problems such as the reconstruction of nonuniform lossless transmission lines, the inverse problem for a layered acoustic medium, and the linear least-squares estimation of stationary stochastic processes. The inverse scattering problem for asymmetric two-component wave equations corresponding to lossy media is also examined and solved by using two coupled sets of Schur recursions. This procedure is then applied to the inverse problem for lossy transmission lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.