Abstract

We develop a self-consistent solution of the Schrödinger and Poisson equations in semiconductor heterostructures with arbitrary doping profiles and layer geometries. An algorithm for this non-linear problem is presented in a multiband k⋅P framework for the electronic band structure using the finite element method. The discretized functional integrals associated with the Schrödinger and Poisson equations are used in a variational approach. The finite element formulation allows us to evaluate functional derivatives needed to linearize Poisson’s equation in a natural manner. Illustrative examples are presented using a number of heterostructures including single quantum wells, an asymmetric double quantum well, p-i-n-i superlattices, and trilayer superlattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.