Abstract

ObjectiveNo method of grading visual field (VF) defects has been widely accepted throughout the glaucoma community. The SCHEIE (Systematic Classification of Humphrey visual fields-Easy Interpretation and Evaluation) grading system for glaucomatous visual fields was created to convey qualitative and quantitative information regarding visual field defects in an objective, reproducible, and easily applicable manner for research purposes.MethodsThe SCHEIE grading system is composed of a qualitative and quantitative score. The qualitative score consists of designation in one or more of the following categories: normal, central scotoma, paracentral scotoma, paracentral crescent, temporal quadrant, nasal quadrant, peripheral arcuate defect, expansive arcuate, or altitudinal defect. The quantitative component incorporates the Humphrey visual field index (VFI), location of visual defects for superior and inferior hemifields, and blind spot involvement. Accuracy and speed at grading using the qualitative and quantitative components was calculated for non-physician graders.ResultsGraders had a median accuracy of 96.67% for their qualitative scores and a median accuracy of 98.75% for their quantitative scores. Graders took a mean of 56 seconds per visual field to assign a qualitative score and 20 seconds per visual field to assign a quantitative score.ConclusionThe SCHEIE grading system is a reproducible tool that combines qualitative and quantitative measurements to grade glaucomatous visual field defects. The system aims to standardize clinical staging and to make specific visual field defects more easily identifiable. Specific patterns of visual field loss may also be associated with genetic variants in future genetic analysis.

Highlights

  • Glaucoma is the leading cause of irreversible blindness worldwide [1]

  • Graders had a median accuracy of 96.67% for their qualitative scores and a median accuracy of 98.75% for their quantitative scores

  • Graders took a mean of 56 seconds per visual field to assign a qualitative score and 20 seconds per visual field to assign a quantitative score

Read more

Summary

Introduction

Glaucoma is the leading cause of irreversible blindness worldwide [1]. This disease is phenotypically heterogeneous, characterized by a spectrum of disease progression and severity. Glaucomatous damage can be quantified structurally and functionally. Structural glaucomatous damage is reflected by characteristic optic nerve and retinal nerve fiber layer change, measured using photography of the optic nerve and imaging techniques such as Confocal Scanning Laser Ophthalmoscopy, Scanning Laser Polarimetry, and Optical Coherence Tomography [3,4]. Glaucoma patients exhibit several characteristic patterns of visual field defects. There is no universally agreed upon standard for grading the diversity of patterns of visual field loss

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.