Abstract

The cohesin complex is at the heart of many chromosomal activities, including sister chromatid cohesion and transcriptional regulation1-3. Cohesin loading onto chromosomes depends on the Scc2/Scc4 cohesin loader complex4-6, but the chromatin features that form cohesin loading sites remain poorly understood. Here, we show that the RSC chromatin remodeling complex recruits budding yeast Scc2/Scc4 to broad nucleosome-free regions, that the cohesin loader itself helps to maintain. Consequently, inactivation of the cohesin loader or RSC complex have similar effects on nucleosome positioning, gene expression and sister chromatid cohesion. These results reveal an intimate link between local chromatin structure and higher order chromosome architecture. Our findings pertain to the similarities between two severe human disorders, Cornelia de Lange syndrome, caused by mutations in the human cohesin loader, and Coffin-Siris syndrome, resulting from mutations in human RSC complex components7-9. Both could arise from gene misregulation due to related changes in the nucleosome landscape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.