Abstract

Consideration is given to the scattering of a plane wave by N cylinders equispaced in a row. The problems associated with scatterers, both "soft" and "hard" in the acoustical sense, are treated. An application of Green's theorem together with the appropriate boundary condition on the cylinders leads to a set of simultaneous integral equations in the unknown function on the cylinders.Solutions in the form of series in powers of a small parameter δ (essentially the ratio of cylinder dimension to wavelength) are assumed. In the case of elliptic cylinders, the integral equations are reduced to sets of linear algebraic equations. Only for the first term in the solution for "soft" cylinders is it necessary to solve N simultaneous equations in N unknowns; all other equations involve essentially only one unknown. Far-fields and scattering cross sections are calculated. The case of two "soft" cylinders is given particular attention.Conditions for justification of the neglect of higher-order terms are discussed. It is found that all terms but the first (in either problem) may be neglected if [Formula: see text] and (N–1)/(ka) is sufficiently small. (Here a is the spacing between centers of adjacent cylinders, and k is the wave number.) For this reason these solutions are most useful when the number of cylinders is small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.