Abstract

The ability of cells to stably maintain their fate is governed by specific transcription regulators. Here, we show that the Scalloped (Sd) and Nervous fingers-1 (Nerfin-1) transcription factors physically and functionally interact to maintain medulla neuron fate in the Drosophila melanogaster CNS. Using Targeted DamID, we find that Sd and Nerfin-1 occupy a highly overlapping set of target genes, including regulators of neural stem cell and neuron fate, and signaling pathways that regulate CNS development such as Notch and Hippo. Modulation of either Sd or Nerfin-1 activity causes medulla neurons to dedifferentiate toa stem cell-like state, and this is mediated at least in part by Notch pathway deregulation. Intriguingly, orthologs of Sd and Nerfin-1 have also been implicated in control of neuronal cell fate decisions in both worms and mammals. Our data indicate that this transcription factor pair exhibits remarkable biochemical and functional conservation across metazoans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.