Abstract

A physical explanation for the saturation of broadband shock-associated noise (BBSAN) intensity with increasing jet stagnation temperature has eluded investigators. An explanation is proposed for this phenomenon with the use of an acoustic analogy. To isolate the relevant physics, the scaling of BBSAN peak intensity level at the sideline observer location is examined. The equivalent source within the framework of an acoustic analogy for BBSAN is based on local field quantities at shock wave – shear layer interactions. Propagation of sound through the jet shear layer is predicted with an adjoint vector Green's function solver of the linearized Euler equations. The combination of the equivalent source and adjoint vector Green's function allows for correct predictions of the saturation of BBSAN with increasing stagnation pressure and stagnation temperature. The sources and vector Green's function have arguments involving the steady Reynolds-Averaged Navier-Stokes solution of the jet. It is proposed that saturation of BBSAN with increasing jet temperature occurs due to a balance between the amplification of the sound propagation through the shear layer and the source term scaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.