Abstract
We analyze the dynamics of an online algorithm for independent component analysis in the high-dimensional scaling limit. As the ambient dimension tends to infinity, and with proper time scaling, we show that the time-varying joint empirical measure of the target feature vector and the estimates provided by the algorithm will converge weakly to a deterministic measured-valued process that can be characterized as the unique solution of a nonlinear PDE. Numerical solutions of this PDE, which involves two spatial variables and one time variable, can be efficiently obtained. These solutions provide detailed information about the performance of the ICA algorithm, as many practical performance metrics are functionals of the joint empirical measures. Numerical simulations show that our asymptotic analysis is accurate even for moderate dimensions. In addition to providing a tool for understanding the performance of the algorithm, our PDE analysis also provides useful insight. In particular, in the high-dimensional limit, the original coupled dynamics associated with the algorithm will be asymptotically ‘decoupled’, with each coordinate independently solving a 1D effective minimization problem via stochastic gradient descent. Exploiting this insight to design new algorithms for achieving optimal trade-offs between computational and statistical efficiency may prove an interesting line of future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.