Abstract

After their first encounter with a foreign antigen, naïve B cells that have immunoglobulin M (IgM) B cell receptors (BCRs) trigger the primary antibody response and the generation of memory B cells with IgG BCRs. When these memory B cells reencounter the same antigen, the cell surface IgG BCRs stimulate their rapid differentiation into plasma cells that release large amounts of IgG antibodies. We showed that the conserved cytoplasmic tail of the IgG BCR, which contains a putative PDZ (postsynaptic density 95/disc large/zona occludens 1)-binding motif, associated with synapse-associated protein 97 (SAP97), a PDZ domain-containing scaffolding molecule that is involved in controlling receptor density and signal strength at neuronal synapses. SAP97 accumulated and bound to IgG BCRs in the immunological synapses that formed in response to B cell engagement with antigen. Knocking down SAP97 in IgG⁺ B cells or mutating the putative PDZ-binding motif in the BCR tail impaired formation of the immunological synapse, initiation of IgG BCR signaling, and downstream activation of the mitogen-activated protein kinase p38. Thus, heightened B cell memory responses are encoded, in part, by a mechanism that involves SAP97 serving as a scaffolding protein in the IgG BCR immunological synapse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.