Abstract

We present various algorithms for generating the state space of an asynchronous system based on the use of multiway decision diagrams to encode sets and Kronecker operators on boolean matrices to encode the next-state function. The Kronecker encoding allows us to recognize and exploit the “locality of effect” that events might have on state variables. In turn, locality information suggests better iteration strategies aimed at minimizing peak memory consumption. In particular, we focus on the saturation strategy, which is completely different from traditional breadth-first symbolic approaches, and extend its applicability to models where the possible values of the state variables are not known a priori. The resulting algorithm merges “on-the-fly” explicit state-space generation of each submodel with symbolic state-space generation of the overall model.Each algorithm we present is implemented in our tool SmArT. This allows us to run fair and detailed comparisons between them on a suite of representative models. Saturation, in particular, is shown to be many orders of magnitude more efficient in terms of memory and time with respect to traditional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.