Abstract

We determine the exact threshold of satisfiability for random instances of a particular NP-complete constraint satisfaction problem (CSP). This is the first random CSP model for which we have determined a precise linear satisfiability threshold, and for which random instances with density near that threshold appear to be computationally difficult. More formally, it is the first random CSP model for which the satisfiability threshold is known and which shares the following characteristics with random $k$-SAT for $k \geq 3$: The problem is NP-complete, the satisfiability threshold occurs when there is a linear number of clauses, and a uniformly random instance with a linear number of clauses asymptotically almost surely has exponential resolution complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.