Abstract

In this paper, we investigate the Sasakian statistical structures of constant ϕ-sectional curvature based on Sasakian space forms. We obtain the classification of this kind of Sasakian statistical structures. Our classification results show that the Sasakian statistical structures of constant ϕ-sectional curvature on a Sasakian space form with dimension higher than 3 must be almost-trivial; on a 3-dimensional Sasakian space form, in addition to the almost-trivial Sasakian statistical structure, there exist other Sasakian statistical structures which satisfy the constant ϕ-sectional curvature condition. We also point out that a rigidity result for cosymplectic statistical structures of constant ϕ-sectional curvature on 3-dimensional cosymplectic space forms in [11] can be improved to the corresponding classification result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.