Abstract

Suppose f is a map of a continuum X onto itself. A periodic continuum of f is a subcontinuum K of X such that f n [ K ] = K for some positive integer n. A proper periodic continuum of f is a periodic continuum of f that is a proper subcontinuum of X. A proper periodic continuum of f is maximal if and only if X is the only periodic continuum that properly contains it. In this paper it is shown that the maximal proper periodic continua of a map of a hereditarily decomposable chainable continuum onto itself follow the Sarkovskii order, provided the maximal proper periodic continua are disjoint. The case in which the Sarkovskii order does not hold reduces to the scenario in which the map's domain is the union of two overlapping period-two continua, each of which is maximal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.