Abstract

The Sandia Architecture for Heterogeneous Unmanned System Control (SAHUC) was produced as part of a three year internally funded project performed by Sandia’s Intelligent Systems, Robotics, and Cybernetics group (ISRC). ISRC created SAHUC to demonstrate how teams of Unmanned Systems (UMS) can be used for small-unit tactical operations incorporated into the protection of high-consequence sites. Advances in Unmanned Systems have provided crucial autonomy capabilities that can be leveraged and adapted to physical security applications. SAHUC applies these capabilities to provide a distributed ISR network for site security. This network can be rapidly re-tasked to respond to changing security conditions. The SAHUC architecture contains multiple levels of control. At the highest level a human operator inputs objectives for the network to accomplish. The heterogeneous unmanned systems automatically decide which agents can perform which objectives and then decide the best global assignment. The assignment algorithm is based upon coarse metrics that can be produced quickly. Responsiveness was deemed more crucial than optimality for responding to time-critical physical security threats. Lower levels of control take the assigned objective, perform online path planning, execute the desired plan, and stream data (LIDAR, video, GPS) back for display on the user interface. SAHUC also retains an override capability, allowing the human operator to modify all autonomous decisions whenever necessary. SAHUC has been implemented and tested with UAVs, UGVs, and GPS-tagged blue/red force actors. The final demonstration illustrated how a small fleet, commanded by a remote human operator, could aid in securing a facility and responding to an intruder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.