Abstract

We present here surface-wave tomography results for the San Andreas Fault in the Parkfield area, California, USA, that were extracted from microseismic noise in the 0.15 Hz to 0.35 Hz frequency band using passive seismic-correlation techniques. Using directive noise incoming from the Pacific Ocean, passive seismic-noise tomography was performed using three-component sensors from a dense seismic network. A rotation algorithm was applied to the nine-component noise-correlation tensor that optimally forced each station pair to re-align in the noise direction, a necessary condition to extract unbiased travel-times from passive seismic processing. After the rotation was performed, an optimal surface-wave tensor is obtained from which Love waves were extracted for tomography inversion. Dispersion curves were then inverted to obtain a three-dimensional shear-velocity map showing vertical geological structures and a 1.3-km wide low seismic velocity dip, which are in agreement with previous tomography studies in the same area. Citation: Roux, P., M. Wathelet, and A. Roueff (2011), The San Andreas Fault revisited through seismic-noise and surface-wave tomography,

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.