Abstract

Zinc dithiophosphate (DTP) molecules have long been used as wear inhibitor oil additives for automotive engines. In order to obtain an atomistic understanding of the mechanism by which these molecules inhibit wear, we examined the geometries, energetics, and vibrations of an oxidized iron surface [(001) surface of α-Fe2O3] using the MSX force field (FF) based on ab initio quantum chemistry (QC) calculations. The DTP molecules studied include (RO)2PS2 with R = methyl, isobutyl, isopropyl, and phenyl. The α-Fe2O3 surface is described using the generalized valence bond (GVB) model of bonding. The geometries, binding energies, and vibrational frequencies from ab initio calculations on simple clusters are used with the biased Hessian method to develop the MSX FF suitable for describing the binding of DTP molecules to the surfaces. We find that the cohesive energies for the self-assembled monolayers (SAM) of the DTP molecules on the Fe2O3 surface correlate with the antiwear performance observed in experimental engine tests. This suggests that the search for more effective and environmentally benign wear inhibitors can use the cohesive energies for SAM formation as a criterion in selecting and prioritizing compounds for experimental testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.