Abstract

Abstract A single-day meeting between two theoretical meteorologists took place in 1961 at the Travelers Research Center (TRC) in Hartford, Connecticut. The two scientists were Barry Saltzman and Edward Lorenz, former proteges of V. P. Starr at Massachusetts Institute of Technology (MIT). Several years before this meeting, Lorenz discovered the following profound result: extended-range weather forecasting was not feasible in the presence of slight errors in initial conditions. The model used was the geostrophic form of a two-level baroclinic model with 12 spectral variables. These results were presented a year earlier at the first symposium on numerical weather prediction (NWP) in Tokyo, Japan, and met with some skepticism from the NWP elite, dynamical meteorologists, and pioneers in operational NWP. Lorenz held faint hope that Saltzman’s recently developed model of Rayleigh–Bénard convection would produce the profound result found earlier. One of the numerical experiments executed that eventful day with Saltzman’s seven-mode truncated spectral model produced an unexpected result: inability of the model’s seven variables to settle down and approach a steady state. This occurred when the key parameter, the Rayleigh number, assumed an especially large value, one associated with turbulent convection. And further experimentation with the case delivered the sought-after result that Lorenz had found earlier and now convincingly found with a simpler model. It built the bridge to chaos theory. The pathway to this exceptional result is explored by revisiting Saltzman’s and Lorenz’s mentorship under V. P. Starr, the authors’ interview with Lorenz in 2002 that complements information in Lorenz’s scientific autobiography, and the authors’ published perspective on Salzman’s seven-mode model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.