Abstract

Inflammasomes are signaling hubs that activate inflammatory caspases to drive cytokine maturation and cell lysis. Inflammasome activation by Salmonella Typhimurium infection or Salmonella-derived molecules is extensively studied in murine myeloid cells. Salmonella-induced inflammasome signaling in human innate immune cells, is however, poorly characterized. Here, we show that Salmonella mutation to inactivate the Salmonella pathogenicity island-2 type III secretion system (SPI2 T3SS) potentiates S. Typhimurium-induced inflammasome responses from primary human macrophages, resulting in strong IL-1β production and macrophage death. Inactivation of the SPI1 T3SS diminished human macrophage responses to WT and ΔSPI2 Salmonella. Salmonella ΔSPI2 elicited a mixed inflammasome response from human myeloid cells, in which NLR family CARD-domain containing protein 4 (NLRC4) and NLR family PYRIN-domain containing protein 3 (NLRP3) perform somewhat redundant functions in generating IL-1β and inducing pyroptosis. Our data suggest that Salmonella employs the SPI2 T3SS to subvert SPI1-induced NLRP3 and NLRC4 inflammasome responses in human primary macrophages, in a species-specific immune evasion mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.