Abstract

The etiology of the adolescent idiopathic scoliosis (AIS) remains unknown. Variations in the sagittal profile of the spine between the early stage scoliotic and non-scoliotic pediatric patients have been shown. However, no quantitative study has shown the link between the sagittal profile and 3D deformity of the spine. 126 right thoracic scoliosis with spinal and 3D reconstructions were included. A 2D finite element model was developed for each of the sagittal curve types without any deformity in the frontal or axial planes. Physiological loadings were determined from the literature and were applied in the finite element model. The 3D deformation patterns of the models were compared to the 3D spinal patterns of the AIS with the same sagittal type. A significant correlation was found between the 3D deformity of the scoliotic curves and the numerical finite element simulation of the corresponding sagittal profile as determined by pattern correlation, p<0.001. The sagittal curve deformation patterns corresponded to the spinal deformities in the patients with the same sagittal curvature. Finite element models of the spines, representing different sagittal types in 126 AIS patients showed that deformation pattern of the sagittal types changes as a function of the spine curvature and associates with the patterns of 3D spinal deformity in AIS patients with the same sagittal curves. This finding provided evidence that the sagittal curve of the spine can determine the deformity patterns in AIS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call