Abstract

A pre-post observational study. To evaluate the safety and feasibility of a new rehabilitation robotic device for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI). Three hospitals in Sichuan Province, China. Individuals aged 15-75 years with an SCI between vertebrae six (T6) and lumbar 1 (L1) and complete motor paralysis participated in an exoskeletal-assisted walking (EAW) programme (2 weeks, 5 days/week, 30 min/day). Data were collected pre-, mid- (week 1) and post-intervention (week 2). Twenty-eight individuals (mean age = 41.3, 71% males) participated in the EAW programme. The distance walked during the 6-min walking test (6MWT) increased relative to that at baseline, during week 1 (13.0 ± 5.3 m) and week 2 (16.2 ± 5.3 m) when wearing the exoskeleton. The walking speed during the 10-m walking test (10MWT) increased from 0.039 ± 0.016 to 0.045 ± 0.016 m/s. The Hoffer walking ability grade, the Spinal Cord Independence Measure (SCIM), and the Walking Index for SCI II (WISCI II) changed after 2 weeks of EAW. No improvement in lower extremity motor score (LEMS) was observed. The rates of adverse events and serious adverse events were 21% and 4%, respectively. The EAW programme with the new robotic exoskeleton provided potential meaningful improvements in mobility for individuals with SCI and had few adverse events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call