Abstract

The nonablative, fractional, 1,927-nm diode laser is theoretically a safe and effective treatment for hyperpigmentation and melasma in darker skin and may potentiate topical cosmeceutical delivery. To evaluate the use of a nonablative, fractional, 1,927-nm diode laser with and without topical 2% hydroquinone (HQ) cream for moderate-to-severe facial hyperpigmentation in Fitzpatrick skin Types III-V. Forty adults underwent 4 laser treatments at 2-week intervals and were randomized to daily application of 2% HQ cream or moisturizer. Follow-ups were conducted 4 and 12 weeks after the final laser treatment. Hydroquinone and moisturizer groups demonstrated Mottled Pigmentation Area and Severity Index improvements of approximately 50% at post-treatment Weeks 4 and 12. Blinded investigator-assessed hyperpigmentation and photodamage improved significantly for both the groups at post-treatment Weeks 4 and 12. Subject satisfaction improved significantly in both the groups by post-treatment Week 4. Although investigator-rated Global Aesthetic Improvement Scale scores were significantly better in the HQ group at post-treatment Week 12, satisfaction was higher among those using moisturizer. No adverse events were noted. The nonablative, fractional, 1,927-nm diode laser produced significant improvement in hyperpigmentation in Fitzpatrick skin Types III-V by 4 weeks, with maintenance of results at 12 weeks after treatment even without HQ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.